CRISP Development report BBar method

B-Bar method, Selective integration technique for near
incompressible materials

Introduction

In the analysis of incompressible materials (materials with poisson’s ratio =0.49,
undrained problems, or plastic zones), an overstiff response has been observed in many
cases. Nagtegaal, et, al, [1] proposed a criterion for determining the suitability of finite
elements for incompressible conditions. They evaluate the ratio of the total number of
degrees of freedom to the total number of constraints at the integration points. If this ratio
is greater than 1, the finite element is suitable for material incompressibility analysis. If
the ratio is less than 1, the finite element is deemed unsuitable and may produce
“locking” effect.

Sloan and Randolph [2] demonstrated that as the order of the polynomial defining the
displacements within an element is increased, the increase of new degrees of freedom is
greater than the increase in the incompressibility constraints. Therefore, higher order
elements are less likely to produce an overstiff response.

Solutions for incompressible elasticity

The ideal solution for elements which suffer from incompressibility constraints is to
break up the stiffness matrix into two parts, one dilatational and one deviatoric. It is the
dilatational part which produces the overstiff response. This part can then be integrated
using a lower order integration rule. This method is called selective integration method.

The element stiffness is given as
K= B"DBdQ

The element internal force vector is given as
e __ T
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where ng, is the number of element nodes



CRISP Development report BBar method

B, 0 0
0 B, 0
0 0 B
B, =
0 B, B,
B, 0 B,
B, B 0]
in which B, _ N, 1<i<3
X

1

where N, is the shape function associated with node a and x; is the i Cartesian
coordinate.

With the selective integration method, the stress tensor is split into deviatoric part and
dilatational (mean) part, so that the stiffness equation becomes:
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Kdil :IQeBTDd”BdQ

ngp
Kdev — ZBTDdevBWi dV
ip
where ngp is the number of integration points for full integration

. rgp .
Kdzl — ZBTDdtlBWi dV
ip
where rgp is the number of integration points for reduced integration. For example, an
eight nodded quadrilateral would have 3x3 integration points for full integration and 2x2
points for reduced integration.

B-Bar method for general incompressibility problems

The method of selective integrations works well for isotropic elastic materials in which it
is easy to split up the stress into deviatoric and dilatational parts. However, with elasto-
plastic materials this procedure is not so straightforward. An alternative method is to split
the B matrix into dilatational and deviatoric parts. This method is also referred as the B-
Bar method. See Hughes T.J.R. [3].

Let B" denote the dilational (mean) part of B,, ie
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The deviatoric part of Ba is then defined by
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— —dil
Ba=B"" +B.

In details, this is given as:

BS B6 BS
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where
B -B
&:‘31 B, =B, +B,
B>—B
&:232 B, =B, +B,
B;—B
&:333 B, = B, + B,

The whole approach reduced to appropriate definitions of the Bi's. Various examples are
presented by Hughes [3]. The following definition is used in this research:

[Bdc

&:1ﬂ9

The denominator represents the finite element’s volume

The above equations present the B matrix for 3D case. For the 2D plane strain case, the B
matrix is modified by eliminating the in-plane strain and the two extra shear strains. For
the special case of Axi-symmetric, the hoop strain is another direct strain. However, there
is only one shear strain in the axi-symmetric case.
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Example of Axi-symmetric analysis of a smooth footing on
Tresca (cohesive) soil)

Mesh outline:

1m

4 10m

A
v

10m

Mesh details near footing area:
The mesh was generated using a two-way structured mesh
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Bearing capacity versus normalized displacement for the normal case (8 noded quads
with full integration), and the BBar method.
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Setting up the BBar option.

This is a new feature in Project Setup menu of SAGE-CRISP version 5.2. Open the
Project Setup Menu and check the box for BBar method as shown below.

Project Setup

Domain Type Element Type

" Plane Strain {

f* Awisymmetnic f* Al Other Elements
Iteration
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B Bar method
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Large Deformation Considerations Insitu Gravity Level
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(" Update Coordinates Only
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Info | (1] 4 | LCancel | Help |
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Plotting the results

The reactions for a set of applied displacements are summed up and tabulated in a file
identified by the analysis ID and with the ending _rec.txt. Open this file with MS Excel
and plot the graph of applied displacement against reaction as shown below. In the graph
below, the total reaction is divided by the circular area of the footing and normilised by
the cohesion of the material. The displacement is also normilised by the radius of the
circular footing.
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