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B-Bar method, Selective integration technique for near 
incompressible materials 
 

Introduction 
 
In the analysis of incompressible materials (materials with poisson’s ratio =0.49, 
undrained problems, or plastic zones), an overstiff response has been observed in many 
cases. Nagtegaal, et, al, [1]  proposed a criterion for determining the suitability of finite 
elements for incompressible conditions. They evaluate the ratio of the total number of 
degrees of freedom to the total number of constraints at the integration points. If this ratio 
is greater than 1, the finite element is suitable for material incompressibility analysis. If 
the ratio is less than 1, the finite element is deemed unsuitable and may produce 
“locking” effect.  
Sloan and Randolph [2] demonstrated that as the order of the polynomial defining the 
displacements within an element is increased, the increase of new degrees of freedom is 
greater than the increase in the incompressibility constraints. Therefore, higher order 
elements are less likely to produce an overstiff response. 
 

Solutions for incompressible elasticity 
 
The ideal solution for elements which suffer from incompressibility constraints is to 
break up the stiffness matrix into two parts, one dilatational and one deviatoric. It is the 
dilatational part which produces the overstiff response. This part can then be integrated 
using a lower order integration rule. This method is called selective integration method. 
 
The element stiffness is given as 

∫Ω Ω=
e

dDBBK Te  

 
The element internal force vector is given as 

∫Ω Ω=
e

dBf Te σ  
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where nen is the number of element nodes 
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where Na is the shape function associated with node a and xi is the ith Cartesian 
coordinate. 
 
With the selective integration method, the stress tensor is split into deviatoric part and 
dilatational (mean) part, so that the stiffness equation becomes: 
 

devdevdev K εσ =  
dildildil K εσ =  
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∫Ω Ω=
e

dBDBK devTdev  
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∫Ω Ω=
e

dBDBK dilTdil  

 

dvwBDBK i

ngp

ip

devTdev ∑=  

where ngp is the number of integration points for full integration 

dvwBDBK i

rgp

ip

dilTdil ∑=  

where rgp is the number of integration points for reduced integration. For example, an 
eight nodded quadrilateral would have 3x3 integration points for full integration and 2x2 
points for reduced integration. 

B-Bar method for general incompressibility problems 
 
The method of selective integrations works well for isotropic elastic materials in which it 
is easy to split up the stress into deviatoric and dilatational parts. However, with elasto-
plastic materials this procedure is not so straightforward. An alternative method is to split 
the B matrix into dilatational and deviatoric parts. This method is also referred as the B-
Bar method. See Hughes T.J.R. [3]. 
Let dil

aB  denote the dilational (mean) part of Ba, ie 
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The deviatoric part of Ba is then defined by 
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dil
a

dev
aa BBB +=  

 
In details, this is given as: 
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where 
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=   839 BBB +=  

 
The whole approach reduced to appropriate definitions of the sBi ' . Various examples are 
presented by Hughes [3]. The following definition is used in this research: 
 

∫

∫
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The denominator represents the finite element’s volume 
 
The above equations present the B matrix for 3D case. For the 2D plane strain case, the B 
matrix is modified by eliminating the in-plane strain and the two extra shear strains. For 
the special case of Axi-symmetric, the hoop strain is another direct strain. However, there 
is only one shear strain in the axi-symmetric case.  
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Example of Axi-symmetric analysis of a smooth footing on 
Tresca (cohesive) soil) 
 
 
Mesh outline: 

 
Mesh details near footing area: 
The mesh was generated using a two-way structured mesh 
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Material properties: 
 

 
 
 
Bearing capacity versus normalized displacement for the normal case (8 noded quads 
with full integration), and the BBar method. 
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Setting up the BBar option. 
 
This is a new feature in Project Setup menu of SAGE-CRISP version 5.2. Open the 
Project Setup Menu and check the box for BBar method as shown below. 
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Plotting the results 
 
The reactions for a set of applied displacements are summed up and tabulated in a file 
identified by the analysis ID and with the ending  _rec.txt. Open this file with MS Excel 
and plot the graph of applied displacement against reaction as shown below. In the graph 
below, the total reaction is divided by the circular area of the footing and normilised by 
the cohesion of the material. The displacement is also normilised by the radius of the 
circular footing. 
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