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THEORY OF STRESSES 
 
In a three dimensional loaded body, there are six independent components of stress at a point 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Shear stress notation:       τab 
 
       face of cube     direction 
 
By moment equilibrium: 
 

τxy = τyx,   τyz = τzy,   τxz = τzx 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
In any stressed material there are always three mutually perpendicular planes on which the shear stresses 
are zero. 
 
These are called the principal planes.   
 
The direct stresses acting on these planes are called principal stresses  (σ1, σ2, σ3). 
 
 In a stressed body the components of stress 

are σx, σy, σz, τxy, τyz and τzx.   
 

We can also describe the stress state with 
respect to another set of axes (e.g. a, b, c). 
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Stress invariants are functions of the stress components which are independent of the axis system chose.  
For example,  
 

3
    

3
    cbazyxp

σσσσσσ ++
=

++
=  

 
is a stress invariant. 
 
 
Another stress invariant is q where: 
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Note that these general definitions of p and  q reduce to those given later for triaxial stress conditions 
(see lecture on Cam-clay). 
 
We will encounter these invariants more frequently expressed in terms of the principal stresses, i.e. 
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Note σ1, σ2, σ3 are also stress invariants. 
 
There is a simple geometric interpretation of p and q in principal stress space. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The line  σ1 = σ2 = σ3   is called the “space diagonal” or the “hydrostatic axis” 
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ELASTICITY 
 
Generalised Hooke’s Law: 
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PLASTICITY 
 
INTRODUCTION 
 
The theory of elasticity allows the calculation of stresses and strains in a loaded body when the body is linear 
and elastic. 
 
The theory of plasticity allows the calculation of stresses and strains in a loaded body when plastic yielding 
takes place. 
 
History (Elasticity) 
 
1822 Cauchy invents concepts of stress and strain 
 
1885 Boussinesq gives his solutions for elastic stress distributions (still used in geotechnical 

engineering today) 
 
 (For 100 years mathematicians slave away obtaining elasticity solutions...) 
 
1956 Finite element method invented (mathematicians are now redundant) 
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History (Plasticity) 
 
1773 Coulomb identifies two components in the strength of soil -  cohesion and 

friction 
 
1864 Criteria are put forward for  
(Tresca)  limits to the elastic behaviour  
  of metals 
1913 
(Von Mises) 
 
1940’s 3 types of statement are now seen to be necessary to completely describe 

plastic stress-strain relations: 
  

 a) yield criteria 
 b) flow rule 
 c) hardening law 

 
1950 R. Hill’s book “Mathematical Theory of Plasticity”  is published. 
 
 

PLASTIC BEHAVIOUR FOR ONE- DIMENSIONAL LOADING 
 

 
 
 
Direct strain in x direction is εx. 
 
 
 Typical stress -strain relation for an 

elastic, work hardening plastic material 
(e.g. metal alloy) 

 
 
 
 
 
 
 
 
 
 
 
 
 
OA is elastic.  A is a yield point.  Y1 is the uniaxial yield stress. 
 
BC and DE are elastic unloading and reloading (parallel to OA). 
 
On reloading to B the yield stress has increased to Y2.  The material is harder and has “strain (or work) 
hardened”. 
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In describing plastic behaviour, the following simplifications (“idealisations”) are often made. 
 
 Elastic, perfectly plastic 
 (steel behaviour is quite like this) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Elastic, linear strain hardening plastic 
 
 
 
 
 
 
 
 
 
 
 
 
 Rigid-plastic 
 (often assumed in collapse calculations) 
 
 
 
 
 
 
 
 
 
 
 

YIELD FUNCTIONS - BASIC IDEAS 
 
 
 
 σ2 is held constant and σ1 is increased until 

yielding starts (or vice versa) 
 
 
 
 
The combinations of σ1 and σ2 that cause yielding are described by a yield function. 
 
Yield functions can be represented by lines in 2D stress space and surfaces in 3D stress space. 
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 For elastic-perfectly plastic behaviour:   
 
 Stress states inside the yield surface are 

elastic. 
 Stress states outside the yield surface are 

impossible, by definition. 
 
 
 
 
 
 
 
 
 
 
 
If strain hardening takes place, there are two possibilities: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The yield surface expands uniformly - this is called isotropic hardening 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The yield surface is “dragged along” - this is called kinematic hardening. 
The differences between these two assumptions become important if unloading takes place. 

2

1

x

xx

x x x

Plastic yielding on
this yield curve or

surface

ELASTIC

 

2

1

A
B

OC

2

2

O
C

B
A

 

2

1

A
B

OC’'

2

2

O
C'

B
A

 



 8 

3σ2σ

k

k

1σ σ

 

k212 =−σσ

k212 =− σσ

k22 =σ

k22 =σ

k21 −=σ

k21 −=σ

1σ

2σ

 

 

YIELD FUNCTIONS - EXAMPLES 
 
a) TRESCA  
 
Yielding takes place when the maximum value of    |σ1 - σ2| ,  |σ2-σ3| ,  |σ3-σ1| equals a critical value (2k). 
 
This can be interpreted (by considering Mohr’s circles) as being equivalent to limiting the maximum shear 
stress on any plane in the material to being less than or equal to k. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider the yield condition in (σ1, σ2) stress 
space when σ3 = 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For triaxial stress conditions σ2 = σ3 and we 
can plot the yield function in (p, q) space. 
 
 
 
 
 
 
 
 
 

2

1

2

1

 

q

p
2k

2k

 



 9 

 
b) VON MISES 
 
Plastic yielding takes place when: 
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where Y is the yield stress in uniaxial tension. 
 
Note (from our earlier definition of q) that the above equation can be written as:  
 

q  =  Y 
 
Structural and mechanical engineers call the  
stress parameter q either: 
 i) the Von Mises stress, 
 ii) the Von Mises equivalent stress, or  
 iii) the equivalent stress 
 
and use the symbol σE rather than q. 
 
Von Mises yield function in (σ1, σ2) space when σ3 = 0 : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is an ellipse with its major axis along  
σ1 = σ2.  The Tresca yield criterion is shown thus  -----  for comparison.   Clearly Y = 2k. 
In triaxial stress conditions σ2 = σ3 and the yield function in (p, q) space is as shown: 
 
 
 
 
 
 
 
 
 
 
 
 
STRAINS 
 
 
For every stress component or invariant there is a 
“corresponding” strain component so that the work done per 
unit volume in elastic deformation is =1/2 stress x strain. 
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Stress 

 

 
Strain 

σx 
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Stress invariant 

 

 
Strain invariant 

 
p 

(defined previously) 
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(defined previously) 

 

 
εp  

(volumetric strain) 
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εq  
(deviatoric strain) 
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PLASTIC STRAINS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The plastic strain is the strain which remains on completely unloading the applied stress. 
 

εp + εe  = εT  
 
 
 εp = plastic strain 
 εe = elastic strain 
 εT = total strain 
 

CALCULATION OF ELASTIC STRAINS 
 
Suppose that the soil is in some stress state σσ ( =  [σ1, σ2, σ3]

 T ).  An increment of stress is now applied to the 
soil (∆σσ).  The resulting strains, if the behaviour is elastic, can be calculated as ∆εε = C∆σσ where C is a square 
matrix containing elastic constants. 
 
 
 

CALCULATION OF PLASTIC STRAINS 
 
In contrast to elastic behaviour, it is found that plastic strains are strongly dependent on the current total 
stresses.  
 
  Thus the plastic strains generated a yield 

point C are not dependent on the direction of 
the stress path when yielding starts. 

 
 
 
 
 
 
 
 
 
 
i.e. paths OAC and OBC lead to the same plastic strains. 
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PLASTIC POTENTIALS 
 
Mathematically, the type of behaviour described above can conveniently be expressed in terms of a potential 
function such that the derivatives of the potential function define the ratios of the plastic strains. 
 
Plastic strain components are often plotted in stress space: 
 

 often called the strain increment vector 
 
 
 
 
 
 
 
 
 
 
 
 Mathematically we write: 
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 where G is the plastic potential 

 
 
 
 
 
 
For metals the plastic potential function is the same as the yield function i.e. G ≡ F and hence we can write: 

     
F

m = 
σ∂

∂
ε pd     (2) 

(m is a scalar number which depends on the hardening law and the details of a particular analysis.  It is called 
the plastic multiplier). 
 
when G ≡≡ F we say there is normality (the strain increment vector is normal to the yield surface) - also called 
associated flow. 
 
Equations like (1) and (2) above are called flow rules. 
 
They govern the ratios of the plastic strain components. 
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Flow Rule - Example with Von Mises 
(a) in σ1, σ2 space when σ3 = 0 
 

( )

( )
( )






−
−

=



















=








=−−+=

12

21

2

1

2

1

2
21

2
2

2
121

2

2

0,

σσ
σσ

∂σ
∂
∂σ
∂

ε
ε

σσσσσσ

m

m
F

m

F
m

d

d

YF

p

p

 

 
 
 
 

  By inspection the strain increment vector is 
perpendicular to the ellipse previously described. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) in p, q space 
 

  Yielding takes place with zero volumetric strains 
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(1) The Von Mises Yield Surface 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(2) The Tresca Yield Surface 
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(3) The Drucker-Prager Yield Surface 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(4) The Mohr-Coulomb Yield Surface 
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